
Identities and characters for finite groups

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1987 J. Phys. A: Math. Gen. 20 2657

(http://iopscience.iop.org/0305-4470/20/10/009)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 10:21

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/20/10
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A: Math. Gen. 20 (1987) 2657-2665. Printed in the UK 
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Nedlands, WA 6009, Australia 

Received 23 September 1986 

Abstract. Polynomial identities satisfied by certain matrices a, with entries from the group 
algebra of a finite group G, are derived in the irreducible representations of G. In the 
special case of the symmetric group S, the identities obtained parallel those previously 
encountered by Green for the infinitesimal generators of the general linear group. Moreover, 
it is demonstrated that the diagonal entries of arbitrary polynomials in the matrix a are 
central elements whose eigenvalues, in irreducible representations o f  the group G, are 
simply determined in terms of the dimensions of the irreducible representations. 

1. Introduction 

Polynomial identities satisfied by the infinitesimal generators of a semi-simple Lie 
group have recently been derived (Bracken and Green 1971, Gould 1985, Kostant 
1975, O’Brien er a1 1977) and applied to yield useful information concerning the 
representation theory of the group. In particular, such identities are useful for the 
explicit determination of Wigner coefficients (Gould 1987a) and for the evaluation of 
centraliser elements (Gould 1987a,b) for treating Lie subalgebra embeddings Lo 2 L. 

In this paper we derive polynomial identities for an arbitrary finite group in the 
framework of induced representations. Our motivating example is the symmetric group 
S, where we have the ( n  + 1) x ( n  + 1) matrix defined by 

a 0 =  1 i i o r j = n + 1  (i#j) 

I( ij) otherwise 

where ( i j )  = Gi), i # j ,  as usual refers to an elementary transposition. Polynomials in 
the matrix a may be defined recursively according to 

n t l  n + l  

a y + ’ =  alka;  = azak, 
k = l  k = I  

where we define 

a: = s,,. 
Our main result is as follows. 

Theorem 1.1. Acting on the irreducible representation of S, with Young diagram 
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2658 M D Gould 

A = ( A , ,  A*, . . , , A,,,), the matrix a satisfies the polynomial identity 

m + l  n ( a - A , + r - 1 ) = O  
r =  1 

where we define A,+, = 0. 

The polynomial identities of theorem 1.1 may be regarded as a symmetric group 
analogue of the polynomial identities obtained by Green (1971) for the infinitesimal 
generators of the Lie group GL( n ) .  I t  shall be demonstrated in 0 3 that these polynomial 
identities may, in general, be considerably reduced. As in the case of Green (1971), 
traces of the matrix powers (2) determine central elements whose eigenvalues, in 
irreducible representations, are easily determined. We have the following result (nota- 
tion as above). 

Theorem 1.2. Set c k  = Then 
k (i) a k = a , , ,  i = l ,  . . . ,  n, 

( i i )  c k  belongs to the centre of the group algebra of s,, 
( i i i )  the eigenvalue ( ( T ~ ) ~  of f l k  in the irreducible representation of S, with Young 

diagram A = ( A , ,  . . . , A,,,) is given by 

where a,  = A, + 1 - r. 

The proof of theorem 1.1 is presented in § 3 and the proof of theorem 1.2 is given in 
0 4. A suitable generalisation of these results for an arbitrary finite group is also 
obtained. 

2. Preliminaries 

We shall be concerned with subgroup embeddings H 3 G where G is a subgroup of a 
finite group H of order [HI. We let A(H) (resp A(G)) denote the group algebra of H 
(respG) over the complex field C and we let Z ( H )  (resp Z(G))  denote the centre of 
A(H) (resp A(G)).  Throughout we let V(Ao) (resp V(A)) denote an irreducible H 
(resp G)-module with representation label A. (resp A ) .  We let rho (resp rA)  denote 
the representation afforded by V(A,) (resp V(A)) and set D [ A ]  = dim V(A). Finally 
we let VH(A) denote the H-module induced by the irreducible G-module V(A) and 
we denote by { A }  the set of H-representation labels which occur in VH(A). With this 
convention we have the H-module decomposition 

where mA,(A) is the multiplicity of V(Ao) in VH(A): by the reciprocity theorem of 
Frobenius (Coleman 1965, Curtis and Reiner 1962) mAo(h) necessarily equals the 
multiplicity of V(A) in V(Ao). 
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Now let g ,G,  g z G , .  . . , gmG (m = lHl/lGl) denote the distinct left G-cosets of H. 
We let p denote the projection p : A( H) + A(G) defined by 

which we extend linearly to all of A(H). The following properties of the mapping p 
are easily established (see, e.g., Coleman 1965, Boerner 1970): 

m 

p(g;lhggJ) = p(g;lhgk)p(gk'ggJ) g , h E H .  ( 5 b )  
k = l  

We note that equation (4) implies that p determines a G-module homomorphism. 
We let gl(m, @) denote the space of m x m matrices over @ and denote by E,, the 

elementary matrix with 1 in the ( i , j )  position and zeros elsewhere. We shall be 
concerned with the map 

a:  A(H) -+ gl( m, @ ) O A ( G )  

defined by 
m 

a ( h ) =  EIJ@p(g;'hg]) h E H  
I J  = 1 

which we extend linearly to all of A(H). In terms of the mapping a, equations ( s a )  
and ( 5 6 )  may be expressed 

where 1 is the identity element of G and I is the m x m identity matrix. It follows, in 
particular, that the mapping a determines an algebra homomorphism. 

We may regard elements of the algebra 

as m x m matrices with entries from A(G). In particular if h E H then d(  h) is the m x m 
matrix with entries 

=p(g;lhgJ)* 
In matrix notation equation (5) may be expressed 

= '1J 
m 

d(hg), = c a ( h ) , k W k ,  g , h E H .  
k = l  

3. Polynomial identities 

Throughout we let E denote a fixed (but arbitrary) element of Z ( H )  and denote the 
eigenvalue of E on the irreducible H-module V(A,) by ( E ) ~ ~ .  We shall be concerned 
with the m x m matrix over A(G) defined by 

a = a ( E ) - I I p ( E ) .  ( 6 )  
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We note that P ( E )  belongs to the centre of A(G). In particular if C is a conjugacy 
class of H then we have the central element 

In this case 

P ( E ) =  c g 
gfcnc 

and the matrix of equation (6) reduces to 

In general we have the following result. 

?'%eorem 3.1. Acting on the irreducible G-module V ( A )  the matrix a satisfies the 
polynomial identity 

n ( a - a A n , A ) = O  
A n € { . \ )  

where 

a A o . A  = ( & ) A o - ( ~ ( & ) ) A .  

Roo$ By our construction, acting on V(A ) the matrix a may be interpreted as an  
operator on the induced H-module 

VH(A)=@ g l O V ( A ) .  
m 

, = I  

We have 

a =  r , " ( & ) - - @ r A [ P ( & ) ]  

where r," is the representation of H afforded by VH(A) .  In view of the decomposition 
(3 )  it follows that a takes the constant value 

~ A , A , , =  ( & ) A , , - ( P ( & ) ) A  

on each of the irreducible H-modules V(A,) occurring in VH(A). The theorem is then 
seen to follow from the fact that a diagonal matrix d with distinct eigenvalues 
S I ,  S2, . . . , tik satisfies the polynomial identity 

k n ( d - 6 , ) = 0 .  
, = I  

A particular case of the matrix (6) is afforded by the S, matrix of equation (1). In 
this case we regard S, as a subgroup of S n + ,  and consider the central element 

n t l  

e =  (U). 
I C j  

We clearly have for the case at hand 
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As a set of S,-coset representatives we choose the transpositions gi = ( i n  + 1) ( i  = 
1 , .  . . , n )  together with the identity element gnil  = 1. We then have, for i, j = 1 , .  . . , n, 

n n 

a( E ) , ,  = p [  (in + 1)( kr)(  j n  + 1 )]  + p [  (in + 1 )( kn + 1 ) (  j n  + 1 )I .  
k c r  k = l  

Using 

k, r # j  kk(;;; r = j  
p [ (  in + 1)( kr)Gn + l ) ]  = 

k # j  
otherwise p [  ( in + 1 ) (  kn + 1)Gn + 1 )]  = 

we obtain 

( U )  i # j  
a ( & ) ,  = { P ( E )  i = j .  

For the remaining entries we have 

d ( E ) i n + l  =d(E) ,+I i  = f: p[(in + ~ ~ ( k n  + 111 
k = l  

= 8 , k  = 1 i =  1 , .  . . , n 
k = l  

n+1 

a ( E ) n + l n + l =  C p [ ( k r ) I = ~ ( ~ ) .  
k < r  

It follows that the matrix 

a,, = a ( & ) ,  - S y P ( E )  

corresponds to the matrix of equation (1) as required. 
We are now in a position to prove theorem 1.1. Let V(A) be an  irreducible S,-module 

with Young diagram A = ( A , ,  A 2 , .  . . , A,,,) (i.e. A, boxes in the rth row). Then the 
S,+,-module V,,,+,(A) induced by V(A) decomposes into irreducible S,+,-modules 
according to (Hamermesh 1962, Robinson 1961) 

m + l  

where V(A + A r )  denotes the irreducible S,+,-module whose Young diagram is obtained 
from A by adding a box to the rth row. The prime in equation ( 7 )  signifies that only 
those S,+,-modules giving rise to allowable Young diagrams are to be retained. From 
the well known result (Hamermesh 1962) 

( P ( E ) ) A  = t  1 A , ( A ,  + 1 -2i)  
m 

( = I  

it follows that on each irreducible S,,+l-module V(A + A , )  occurring in equation ( 7 )  
the matrix a takes the constant value 

+ 1 - r = (E)A+L\, - ( P ( E ) ) A .  

The result is then seen to follow immediately from theorem 3.1. 
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Remarks. The matrix of equation (1) is a particular case of a whole series of tensor 
matrices which may be defined for S, in the framework of outer direct products 
(Coleman 1965, Hamermesh 1962). It shall be demonstrated in a forthcoming publica- 
tion that a suitable generalisation of theorem 1.1 may be obtained for these higher-order 
tensor matrices. 

We note that the polynomial identity of theorem 1.1 is not, in general, the minimum 
polynomial identity satisfied by the matrix a. From the proof of theorem 1.1 it follows 
that, for a given Young diagram A, only those factors ( a  - A, - r + 1) corresponding to 
allowable Young diagrams ( A  + A ? )  need be retained in the identity. Keeping in mind 
the fact that the roots of the identity of theorem 1.1 are all distinct, we obtain, by this 
means, the following result (notation as above). 

Theorem 3.2. Acting on the irreducible representation of S, with Young diagram 
A = ( A , ,  A * ,  . . . , A m )  the matrix a of equation (1) satisfies the minimum polynomial 
identity 

m + l  

( a - A l )  n ( a - A , + r - l ) = O .  
r = 2  

The minimum polynomial identities corresponding to some special Young diagrams 
A of interest are listed below: 

A =(1")  

A = ( n )  

( a  - l ) ( a  + n )  = 0 

(a  - n ) ( a  + 1) = 0 

A = ( p n  - p )  

A = (2'1"-') 

( U  - p ) (  U - n + p + 1)( U + 2) = 0 

( U  + p  - l ) ( a  + n ) ( a  -2)  =O. 

4. Group characters and central elements 

Let C denote the centraliser of d[A(H)] in Y =gl(m, @ ) O A ( G ) ,  i.e. 

C = { y  E Yid( h ) y  = yd( h ) ,  V h  E H}. 

We have the following result (notation as in Q 2). 

Lemma 4.1. Let w E C be arbitrary. Then the diagonal entries of w are all equal and 
belong to the centre of A(G), i.e. 

w I 1  = w2> = . . . = w,, E Z(G). 

Pro05 Suppose w E C and choose h E H arbitrary. We then have 

a( h ) w  = wd( h )  

which is equivalent to 
m f p(g;'hgk)wkj  = 2 w,kP(g;'hgJ) .  

k = l  & = I  



Identities and characters for finite groups 2663 

Now choose g E G arbitrary and  set h = g,gg,-' in equation ( 8 )  to give 

or 

which is equivalent to 

gw,j = ('Jug ( 9 )  

where we have used equations (4) and ( 5 a ) ,  respectively. Since g E G  was chosen 
arbitrarily, equation (9) is seen to hold for all g E G, i, j = 1, . . . , m, which is sufficient 
to prove the result. 

The above result has important consequences with regard to the characters of the 
group G. This follows because the matrix a of equation (6) and  all of its powers 
belong to C whence we have the central elements 

(10) ( i  = 1 , .  . . , m ) .  k 
uk = 

We have the following result (notation as in 0 2 ) .  

7'heorem 4.1. The eigenvalue of the invariant (+k on the irreducible G-module V(A) 
is given by 

Proof: Following the derivation of theorem 3.1, acting on the irreducible G-module 
V ( h )  the operator a may be regarded as an  operator on the induced H-module VH(A): 

a ry(&) - I@ r A [ p ( & ) ] .  

The operator a takes the constant value 

a A o , A  = (&)AO-(p(&))A 

on each irreducible H-module V(Ao)  occurring in VH(A). It follows immediately from 
the decomposition (3) that the total trace of the matrix power a k  on  the space V,(A) 
is given by 

T r A [ a k ] =  ~ A ~ ( A ) ~ : , A , ~ [ A O ] *  
A i i s ( A 1  

On the other hand we may write, in view of lemma 4.1, 

The result is then seen to follow by comparison with equation (11). 
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In the case of the symmetric group S, we have the central elements 

(12) k 
u k  = an+lf l+l  

where a is the matrix of equation (1). Thus parts (i) and  (ii) of theorem 1.2 follow 
immediately from lemma 4.1. The k-cycle class invariants (Coleman 1965, Robinson 
1961) 

k = 2 , .  . . , n 1 
k t 1 + t 2 +  # I h  

c , = 1  c k = -  ( i , i 2 . .  , ik)  

are related to the invariants (12) by the following lemma. 

Lemma 4.2. 

uk+l=kCk+#J where C$ E @[cl ,  c 2 , .  . . , C k - l ]  

( k  = 2 , .  . . , n )  with u2 = n. In particular, the invariants U* ,  , . . , U,+, generate (as a n  
algebra) the centre of the symmetric group algebra. 

Proof: By definition it follows that u2 = n and  for k = 2 , .  . . , n we have 
n + l  

U k t l  = an+lrla~l~2 * ' '  a ~ ~ _ ~ ~ , a t , n + l  
11.12. r l h  

= C ( j 1 i 2 ) ( i 2 i ~ ) . . . ( i ~ - ] j k ) + ~  
# I ,  

= kCk -k 4 
where rb is the sum of all terms of the form 

a1,12a,2al, * * . 4 - , 1 ,  

with at least two indices i,, i, ( r  # j )  equal or with at least one index i, equal to n + 1 .  
This is enough to ensure that is a sum of products of at most (k  - 2) transpositions 
whence C$ belongs to @[cl ,  c2 , .  . . , c ~ - ~ ] .  Since the ck ( k  = 1 , .  . . , n )  generate the centre 
of the group algebra of S n  (see, e.g., Coleman 1965, Robinson 1961) the same must 
be true of the invariants u2, u3,. . . , u,,+~. 

To complete the proof of theorem 1.2, we conclude by establishing part (iii) of theorem 
1.2. We have from theorem 4.1 that the eigenvalues of the Sn invariants (12) in the 
irreducible representation with Young diagram A = ( A , ,  . . . , A m )  are given by (notation 
as in Q 1 )  

where the prime indicates that the summation is over all r such that ( A  + A , )  is an  
allowable Young diagram for Sn+,. For such r we obtain, from the hook-length formula 
of Robinson (1961), 

where pr = A , +  m - r ( r  = 1 , .  . . , m ) .  In the case r = m + 1 we obtain 
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In terms of the characteristic roots a ,  = A r  + 1 - r the above formulae may be written 
in the unified form 

Substituting into equation (13)  we obtain 

If the Young diagram ( A + A , )  is not allowable we must have A , = A , - l  in which 
case a, - CY,-, + 1 = 0. Since the product 

always contains a factor ( a ,  - ar-] + 1) we see in fact that the summation in equation 
(14) may be extended over all r = 1 , .  . . , rn + 1. Finally, as previously noted, the 
characteristic roots a, ( r  = 1, . . . , rn + 1) are all distinct so that the products in equation 
(14) are well defined. This completes the proof of the theorem. 

Remarks, Our approach to theorem 4.1 was motivated by the Casimir invariant formulae 
for the simple Lie algebras derived by Edwards (1978) and O'Kubo (1977) (see also 
Gould 1987b). In the case of the symmetric group S, it has been demonstrated 
(Hamermesh 1962, Robinson 1961) that eigenvalue formulae of the type in theorem 
1.2 are useful for the calculation of group characters. It is hoped that the general 
result of theorem 4.1 may be of similar use for a wider range of groups. I t  would be 
of particular interest to examine in further detail the case where G is a simple group. 
From the point of view of obtaining central elements and their eigenvalues it suffices 
to make the simplest choice for the matrix a, i.e. the simplest (non-trivial) choice for 
E E Z ( H )  and the group H # G in which to embed G. 
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